This article was downloaded by: On: 28 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: <http://www.informaworld.com/smpp/title~content=t713646857>

Isothermal Vapour-Liquid Equilibria for the Ethanol 1-Propanol Acetonitrile Benzene System

Isamu Nagata^a

a Department of Chemical Engineering, Division of Physical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan

To cite this Article Nagata, Isamu(1990) 'Isothermal Vapour-Liquid Equilibria for the Ethanol 1-Propanol Acetonitrile Benzene System', Physics and Chemistry of Liquids, $21: 2$, $137 - 145$

To link to this Article: DOI: 10.1080/00319109008028475 URL: <http://dx.doi.org/10.1080/00319109008028475>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use:<http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phys. Chem. Liq., 1990, **Vol.** 21, pp. 137-145 Reprints available directly from the publisher Photocopying permitted by license only

ISOTHERMAL VAPOUR-LIQUID EQUILIBRIA FOR THE ETHANOL + **1-PROPANOL** + **ACETONITRILE** + **BENZENE SYSTEM**

ISAMU NAGATA

Department of Chemical Engineering, Division of Physical Sciences, Kanazawa University, Kodutsuno 2, Kunuzuwu, Ishikuwu 920, Jupun.

i Rrceriwl I5 Auyut/ 1989)

Isothermal quaternary vapour~ liquid equilibria for mixtures containing ethanol, I-propanol, acetonitrile and benzene have been measured using a vapour-recirculating Boublik still at 318.1 5 K. The experimental results compare well with those calculated from the UNIQUAC associated-solution model, which assumes the association of alsochols and the solvation of unlike molecules and includes binary parameters alone.

KEY WORDS: Associated solution, molecular complexation, quaternary vapour liquid equilibria

LIST OF **SYMBOLS**

INTRODUCTION

Downloaded At: 08:31 28 January 2011 Downloaded At: 08:31 28 January 2011

> **As** part of studies on the thermodynamic properties of quaternary non-electrolyte solutions including two alcohols, this **work** has two objectives: (1) to report experimental vapour-liquid equilibrium results for the ethanol + 1-propanol + acetonitrile + benzene system at 318.15 ; (2) to investigate the ability of the UN-IQUAC associated-solution model^{1,2} in data analysis. Six experimental vapour-liquid equilibrium data sets for binary systems constituting the quaternary system have been reported in the literature: ethanol + 1-propanol³ at 313.15 K; ethanol + acetonitrile⁴ at 313.15 K; ethanol + benzene⁵ at 318.15 K; 1-propanol + acetonitrile⁶ at 328.15 K; 1-propanol + benzene⁵ at 318.15 K; acetonitrile + benzene⁷ at 318.15 K.

EXPERIMENTAL

Acetonitrile and 1 ~ propanol (special grade; Wako Pure Chemical Industries Ltd.) were used without further purification. C.P. benzene was subjected to repeated recrystallization. C.P. ethanol was fractionally distilled after storage over calcium oxide. The densities of these compounds were measured with an Anton Paar (DMA40) densimeter controlled at 298.15 ± 0.01 K. The observed densities and vapour pressures compare well with literature values⁸⁻¹⁰ in Table 1.

Component	$(a \, cm^{-3})$	Density at 298.15 K	Vapour pressure at 318.15 K (Torr)		
	Expt.	Lie^s	Expt.	Lit.	
Acetonitrile	0.7766	0.7766	208.3	208.359	
Benzene	0.8737	0.87370	223.7	223.51 ⁸	
Ethanol	0.7852	0.78504	172.9	173.00^{10}	
1-Propanol	0.7997	0.79975	69.5	69.538	

Table 1 Densities and vapour pressures of pure component\.

The vapour-liquid equilibrium results were obtained using a Boublik recirculating still as described previously.¹¹ Vapour and liquid compositions were determined using a Shimadzu gas chromatograph **(GC-8A)** and **a** Shimadzu Chromatopac *(C-*R3A). The experimental errors involved in the measured variables were estimated as 0.16 Torr for pressure, 0.05 K for temperature, 0.002 for vapour and liquid phase mole fractions.

The experimental vapour liquid equilibrium results are shown in Table 2, where the activity coefficients γ_I and the fugacity coefficients ϕ_I of component I were calculated from Eqs (1) and (2) .

$$
\gamma_I = P\phi_I y_I / \left\{ x_I P_I^s \phi_I^s \cdot \exp\left[v_I^L (P - P_I^s) / RT \right] \right\}
$$
 (1)

$$
\ln \phi_I = \left(2 \sum_J y_J B_{IJ} - \sum_I \sum_J y_I y_J B_{IJ}\right) \frac{P}{RT}
$$
 (2)

where P is the total pressure, y the vapour-phase mole fraction, x the liquid phase mole fraction, P^s the pure component vapour pressure, R the gas constant and T the absolute temperature. v^L is the pure liquid molar volume calculated from a modified Rackett equation¹² and the second virial coefficients B were estimated using the Hayden-O'Connell correlation.¹³

DATA ANALYSIS

The experimental results were analyzed with the UNIQUAC associated-solution model.^{1,2} A, B, C and D indicate ethanol, 1-propanol, acetonitrile and benzene, respectively. The model postulates that in a quaternary mixture containing two alcohols and two nonassociating components the association and multisolvation reactions of alcohol molecules give open hydrogen-bonded chains of any length, *A;,* B_i , $(A_i B_j)_k$, $(B_i A_j)_k$, $A_i (B_j A_k)_l$ and $B_i (A_j B_k)_l$. The terminal hydroxyl groups of alcohol chains and active nonassociating molecules form additional complexes, *A,C,* $B_i(A_iB_k)_iC$ and $B_i(A_iB_k)_iD$. All successive chemical reactions are summarized as *AiD, B;C, B;D, (A;B,)kC, (A;B,)kD, (B;Aj)kC, (BiAj),D, Ai(BjA,),C, Ai(BjA,),D,*

> $A_{i-1} + A_1 = A_i$ $B_{i-1} + B_1 = B_i$ $(A_i B_j)_{k-1} + A_i B_i = (A_i B_i)_k$ $(B_iA_i)_{k=1} + B_iA_i = (B_iA_i)_{k}$ $A_i + (B_i A_k)_i = A_i (B_i A_k)_i$ $B_i + (A_i B_k)_i = B_i (A_i B_k)_i$ $A_i + C = A_i C$ $B_i + C = B_i C$ $A_i + D = A_iD$ $B_i + D = B_iD$ $(A_i B_j)_k + C = (A_i B_j)_k C$ $(B_i A_j)_k + C = (B_i A_j)_k C$ $(A_i B_i)_k + D = (A_i B_i)_k D$ $(B_iA_i)_k + D = (B_iA_i)_kD$ $A_i(B_iA_k)_i + C = A_i(B_iA_k)_iC$ $B_i(A_iB_k)_i + C = B_i(A_iB_k)_iC$ $A_i(B_iA_k)_l + D = A_i(B_iA_k)_lD$ $B_i(A_iB_k)_i + D = B_i(A_iB_k)_iD$

where the subscripts *i*, *j*, *k* and *l* take an integer ranging from one to infinity. The equilibrium constants for the above reactions are independent of the degree of association and solvation.

The activity coefficient of component I is given by

$$
\ln \gamma_I = \ln \left(\frac{\Phi_{I_1}}{\Phi_{I_1}^* x_I} \right) + \frac{r_I}{V_I^*} - \frac{r_I}{V} - \left(\frac{Z}{2} \right) q_I \left(\ln \frac{\Phi_I}{\theta_I} + 1 - \frac{\Phi_I}{\theta_I} \right)
$$

+
$$
q_I \left[1 - \ln \left(\sum_J \theta_I \tau_{JI} \right) - \sum_J \frac{\theta_J \tau_{IJ}}{\sum_K} \frac{\partial_K \tau_{KJ}}{\partial_K \tau_{KJ}} \right]
$$
(3)

where *Z* is the coordination number, here equal to 10, and the segment fraction Φ_I , the area fraction θ_I , the binary parameter τ_{IJ} related to the interaction parameter a_{IJ} , the true molar volume of the quaternary mixture *V,* the true molar volume of pure component I V_i and the monomer segment fraction of pure alcohol I $\Phi_{I_i}^{\circ}$ are given by

$$
\Phi_I = x_I r_I / \sum_J x_J r_J \tag{4}
$$

$$
\theta_I = x_I q_I / \sum_J x_J q_J \tag{5}
$$

$$
\tau_{IJ} = \exp(-a_{IJ}/T) \tag{6}
$$

Downloaded At: 08:31 28 January 2011

Downloaded At: 08:31 28 January 2011

142 **I. NAGATA**

$$
\frac{1}{V} = \frac{S_A}{r_A} + \frac{S_B}{r_B} + \left(\frac{2}{r_A r_B K_{AB}} + \frac{S_A}{r_A} + \frac{S_B}{r_B}\right) \frac{r_A r_B K_{AB}^2 S_A S_B}{(1 - r_A r_B K_{AB}^2 S_A S_B)} \n+ \frac{\Phi_{C_1}}{r_C} \left\{1 + r_C K_{AC} S_A + r_C K_{BC} S_B \n+ \left[\left(\frac{1}{r_B K_{AB}} + S_A\right) K_{AC} + \left(\frac{1}{r_A K_{AB}} + S_B\right) K_{BC}\right] \frac{r_A r_B r_C K_{AB}^2 S_A S_B}{(1 - r_A r_B K_{AB}^2 S_A S_B)}\right\} \n+ \frac{\Phi_{D_1}}{r_D} \left\{1 + r_D K_{AD} S_A + r_D K_{BD} S_B \n+ \left[\left(\frac{1}{r_B K_{AB}} + S_A\right) K_{AD} + \left(\frac{1}{r_A K_{AD}} + S_B\right) K_{BD}\right] \frac{r_A r_B r_D K_{AB}^2 S_A S_B}{(1 - r_A r_B K_{AB}^2 S_A S_B)}\right\} (7) \n+ \frac{1}{V_1} = \frac{1 - K_I \Phi_{I_1}^2}{r_I}
$$
\n(8)

$$
\Phi_{I_1} = \frac{2K_I + 1 - (1 + 4K_I)^{0.5}}{2K_I^2} \tag{9}
$$

For acetonitrile $\Phi_{C_1}^{\circ} = 1$ and for benzene $\Phi_{D_1}^{\circ} = 1$. The monomer segment fractions in the mixture, Φ_{A_1} , Φ_{B_1} , Φ_{C_1} and Φ_{D_1} , are obtained by solving simultaneously the following mass balance equations

$$
\Phi_{A} = (1 + r_{A}K_{AC}\Phi_{C_{1}} + r_{A}K_{AD}\Phi_{D_{1}})\bar{S}_{A} + \frac{r_{A}K_{AB}\bar{S}_{A}S_{B}}{(1 - r_{A}r_{B}K_{AB}^{2}\bar{S}_{A}S_{B})^{2}} \times \{2 + r_{B}K_{AB}S_{A}(2 - r_{A}r_{B}K_{AB}^{2}\bar{S}_{A}S_{B}) + r_{A}K_{AB}S_{B} + \Phi_{C_{1}}[(r_{A}K_{AC} + r_{B}K_{BC}) + r_{A}r_{B}K_{AB}K_{AC}S_{A}(2 - r_{A}r_{B}K_{AB}^{2}\bar{S}_{A}S_{B}) + r_{A}r_{B}K_{AB}K_{BC}S_{B}] \times \Phi_{D_{1}}[(r_{A}K_{AD} + r_{B}K_{BD}) + r_{A}r_{B}K_{AB}K_{AD}S_{A}(2 - r_{A}r_{B}K_{AB}^{2}\bar{S}_{A}S_{B}) + r_{A}r_{B}K_{AB}K_{BD}S_{B}]
$$
\n(10)

$$
\Phi_B = (1 + r_B K_{BC} \Phi_{C_1} + r_B K_{BD} \Phi_{D_1}) \overline{S}_B + \frac{r_B K_{AB} S_A \overline{S}_B}{(1 - r_A r_B K_{AB}^2 S_A S_B)^2} \times \{2 + r_A K_{AB} S_B (2 - r_A r_B K_{AB}^2 S_A S_B) + r_B K_{AB} S_A \n+ \Phi_{C_1} [(r_A K_{AC} + r_B K_{BC}) + r_A r_B K_{AB} K_{BC} S_B (2 - r_A r_B K_{AB}^2 S_A S_B) \n+ r_A r_B K_{AB} K_{AC} S_A] \n+ \Phi_{D_1} [(r_A K_{AD} + r_B K_{BD}) + r_A r_B K_{AB} K_{BD} S_B (2 - r_A r_B K_{AB}^2 S_A S_B) \n+ r_A r_B K_{AB} K_{AD} S_A]
$$
\n(11)

$$
\Phi_C = \Phi_{C_1} \{ 1 + r_C K_{AC} S_A + r_C K_{BC} S_B + \frac{r_A r_B r_C K_{AB}^2 S_A S_B}{(1 - r_A r_B K_{AB}^2 S_A S_B)} \left[\frac{K_{AC}}{r_B K_{AB}} + \frac{K_{BC}}{r_A K_{AB}} + K_{AC} S_A + K_{BC} S_B \right] \}
$$
\n(12)

$$
\Phi_D = \Phi_{D_1} \{ 1 + r_D K_{AD} S_A + r_D K_{BD} S_B + \frac{r_A r_B r_D K_{AB}^2 S_A S_B}{(1 - r_A r_B K_{AB}^2 S_A S_B)} \left[\frac{K_{AD}}{r_B K_{AB}} + \frac{K_{BD}}{r_A K_{AB}} + K_{AD} S_A + K_{BD} S_B \right] \}
$$
\n(13)

where the sums, S_A , S_B , \overline{S}_A and \overline{S}_B , are given by

$$
S_A = \frac{\Phi_{A_1}}{(1 - K_A \Phi_{A_1})}
$$
 (14)

$$
S_B = \frac{\Phi_{B_1}}{(1 - K_B \Phi_{B_1})}
$$
 (15)

$$
\overline{S}_A = \frac{\Phi_{A_1}}{(1 - K_A \Phi_{A_1})^2} \tag{16}
$$

$$
\overline{S}_B = \frac{\Phi_{B_1}}{(1 - K_B \Phi_{B_1})^2}
$$
 (17)

The pure component structural parameters, *r* and *q,* were calculated from the method of Vera *et al.*¹⁴ The association constants for ethanol and 1-propanol at 323.15 K were taken from Brandani.¹⁵ The enthalpy of formation of a hydrogen bond is -23.2 kJ mol⁻¹, which was obtained from Stokes and Burfitt.¹⁶ The values of the solvation constant at 323.15 K and the enthalpy of complex formation are $K_{AB} = 49.0$ and $h_{AB} = -23.2 \text{ kJ} \text{ mol}^{-1}$ for ethanol + 1-propanol,¹⁷ $K_{AC} = 50(313.15 \text{ K})$ and $h_{AC} = -17 \text{ kJ} \text{ mol}^{-1}$ for ethanol + acetonitrile,¹ $K_{AD} = 3$ and $h_{AD} = -8.3 \text{ kJ} \text{ mol}^{-1}$ $h_{AC} = -1$ / kJ mol ⁻ tor ethanol + acetonitrile, $K_{AD} = 3$ and $h_{AD} = -8.3$ kJ mol⁻¹ for ethanol + benzene,¹ $K_{BC} = 30.0$ and $h_{BC} = -17$ kJ mol⁻¹ for 1-propanol + acetonitrile,¹⁸ and $K_{BD} = 2.5$ and $h_{BD} = -8.3$ kJ mol⁻¹ for 1-propanol + benzene.¹ **All** *17's* were assumed to be independent of the temperature and the degree of association and fix the temperature dependence of the equilibrium constants via the van't Hoff relation. Table *3* gives the structural and association parameters for pure components.

Table 3 Structural and association parameters for pure components

Component		q	Κ (323.15 K)	$-h$ $(kJ\,mol^{-1})$	
Acetonitrile	1.50	1.40			
Benzene	2.56	2.05			
Ethanol	1.69	1.55	110.4	23.2	
1-Propanol	2.32	1.98	87.0	23.2	

Optimum binary parameters were sought using a computer programme, as described by Prausnitz et *al.*,¹⁹ and minimizing the objective function defined by

$$
F = \sum_{i=1}^{N} \left[\frac{(P_i - \hat{P}_i)^2}{\sigma_p^2} + \frac{(T_i - \hat{T}_i)^2}{\sigma_T^2} + \frac{(x_{1i} - \hat{x}_{1i})^2}{\sigma_x^2} + \frac{(y_{1i} - \hat{y}_{1i})^2}{\sigma_y^2} \right]
$$
(18)

where a circumflex denotes the calculated value and the standard deviations in the measured variables were used as: $\sigma_p = 1$ Torr; $\sigma_T = 0.05$ K; $\sigma_x = 0.001$; $\sigma_y = 0.003$. Table 4 shows the energy parameters and the root-mean-square deviations of the measured values from the calculated results. Table 5 summarizes the results of quaternary prediction based on the binary parameters alone. The magnitude of the deviations between the experimental and predicted results of the vapour compositions and the total pressure is comparable with that obtained for ternary alcohol mixtures, ^{1,2,11,18} and confirms the good ability of the UNIQUAC associated-solution model.

Table 4 The results of fitting the UNIQUAC associated-solution model to vapour-liquid equilibria and r.m.s. deviations δP , δT , δx and δy for binary systems.

System	Temp. (K)	No. of data points	Root-mean-square deviations			<i>Parameters</i>		
			δP (Torr)	δT (K)	δx $(\times 10^3)$	ðr $(\times 10^3)$	a_{AB} (K)	a_{BA} (K)
Ethanol (A) $+1$ -propanol (B)	313.15	10	0.20	0.00	0.0		66.50	-66.10
Ethanol (A) $+$ acetonitrile (B)	313.15	4	0.89	0.02	0.6	4.2	520.85	71.20
Ethanol (A) $+$ benzene (B)	318.15	12	0.83	0.02	0.6	3.9	10.38	97.26
1 -Propanol (A) $+$ acetonitrile (B)	328.15	10	1.51	0.00	0.8	4.1	580.27	49.41
l -Propanol (A) $+$ benzene (B)	318.15	11	0.14	0.00	0.1	1.4	114.53	-8.23
Acetonitrile (A) $+$ benzene (B)	318.15	12	0.78	0.02	0.5	3.6	-10.54	258.38

Table 5 Quaternary calculated results for the ethanol $(1) + 1$ -propanol $(2) +$ acetonitrile $(3) +$ benzene (4) system at 318.15 **K.**

Rtferences

- I. 1. Nagata, *Fluid Phase Equilibriu.* **19,** 153 (1985).
- 2. 1. Nagata and K. Ohtsubo. *Therrnochim. Acto.* **102,** 185 (1986).
- 3. P. Oracz *Int. Dura Ser. Ser. A, 78* (I 986).
- 4. J. Gmehling, U. Onken and W. Arlt, *Vapor-Liquid Equilibrium Dotu Collection* (DECHEMA. Frankfurt am Main, 1982), Vol. I, Part 2c.
- 5. J. Gmehling and U. Onken, *Vupor-Liquid Equilihriurn Dara Co/lection* (DECHEMA, Frankfurt am Main, 1977), vol. **I, Part** 2a.
- 6. T. Ohta, T. Kinoshita and **1.** Nagata, J. *Chem. Eng. Dura,* **28,** 36 (1983).
- 7. J. Gmehling, U. Onken and W. **Arlt,** *Vapor Liquid Equilibrium Dara Collection* (DECHEMA, Frankfurt am Main, 1980), Vol. I, Part 7.
- 8. J. A. Riddick and W. B. Bunger, *Organic Solvents*, 3rd ed. (Wiley-Interscience, New York, 1970).
- 9. **1.** Brown and F. Smith, *Ausr.* J. *Chem., 7,* 269 (1954).
- 10. T. Boublik, V. Fried and E. Hála, *The Vapour Pressures of Pure Substances*, 2nd ed. (Elsevier, Amsterdam, 1984).
- **11. 1.** Nagata, J. *Chrrn. Eng. Dotu,* **30,** 201 (1985).
- 12. C. F. Spencer and R. P. Danner, *J. Chern. Eng. Dam,* **17,** 236 (1972).
- 13. J. G. Hayden and J. P. O'Connell, *Ind. Eng. Chern. Process Des. Deu.,* **14,** 209 (1975).
- **14.** J. H. Vera, S. G. Sayegh and *G.* A. **Ratcliff,** *Fluid Phase Equi/ibriu,* I, 113 (1977).
- 15. V. Brandani, *Fluid Phase Equilihriu,* **12,** 87 **(1** 983).
- 16. R. H. **Stokes** and C. Burfitt, *J. Chem. Thrrmodyn., 5,* 236 (1973).
- 17. **1.** Nagdta and K. Gotoh, *Thermochim. Acta,* **102,** 207 (1986).
- 18. **1.** Nagata, *Fluid Phase Eyuilihriu,* **24,** 279 (1985).
- 19. J. M. Prausnitz, T. F. Anderson, E. **A. Grens,** C. A. Eckert, R. Hsieh and J. P. **OConnell,** *Computer Ca/culu/ion.v.for Multicomponent Vupor-Liquid Equilibria* (Prentice- Hall, Englewood **Cliffs,** NJ, 1980).